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ABSTRACT
We present an automatic skew mitigation approach for user-
defined MapReduce programs and present SkewTune, a sys-
tem that implements this approach as a drop-in replacement
for an existing MapReduce implementation. There are three
key challenges: (a) require no extra input from the user
yet work for all MapReduce applications, (b) be completely
transparent, and (c) impose minimal overhead if there is no
skew. The SkewTune approach addresses these challenges
and works as follows: When a node in the cluster becomes
idle, SkewTune identifies the task with the greatest expected
remaining processing time. The unprocessed input data of
this straggling task is then proactively repartitioned in a way
that fully utilizes the nodes in the cluster and preserves the
ordering of the input data so that the original output can be
reconstructed by concatenation. We implement SkewTune
as an extension to Hadoop and evaluate its effectiveness us-
ing several real applications. The results show that Skew-
Tune can significantly reduce job runtime in the presence of
skew and adds little to no overhead in the absence of skew.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases, Parallel databases, Query processing

General Terms
Design, Performance

1. INTRODUCTION
Today, companies, researchers, and governments accu-

mulate increasingly large amounts of data that they pro-
cess using advanced analytics. We observe that the in-
creased demand for complex analytics support has trans-
lated into an increased demand for user-defined operations
(UDOs) — relational algebra and its close derivatives are
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Figure 1: A timing chart of a MapReduce job run-

ning the PageRank algorithm from Cloud 9 [18]. Exec

represents the actual map and reduce operations. The

slowest map task (first one from the top) takes more than

twice as long to complete as the second slowest map task,

which is still five times slower than the average. If all

tasks took approximately the same amount of time, the

job would have completed in less than half the time.

not enough [23, 32]. But UDOs complicate the algebraic
reasoning and other simplifying assumptions relied on by the
database community to optimize execution. Instead devel-
opers rely on “tricks” to achieve high performance: ordering
properties of intermediate results, custom partitioning func-
tions, extensions to support pipelining [33] and iteration [5],
and assumptions about the number of partitions. For ex-
ample, the Hadoop-based sort algorithm that won the tera-
sort benchmark in 2008 required a custom partition func-
tion to prescribe a global order on the data [27]. Moreover,
when these UDOs are assembled into complex workflows,
the overall correctness and performance of the application
becomes sensitive to the characteristics of individual oper-
ations. Transparent optimization in the context of realistic
UDO programming practices is a key goal in this work. In
particular, we tackle the challenge of effective UDO paral-
lelization.

MapReduce [6] has proven itself as a powerful and cost-
effective approach for writing UDOs and applying them to
massive-scale datasets [2]. MapReduce provides a simple
API for writing UDOs: a user only needs to specify a serial



map function and a serial reduce function. The implemen-
tation takes care of applying these functions in parallel to a
large dataset in a shared-nothing cluster. In this paper, we
therefore focus on UDOs in the form of MapReduce appli-
cations.

While MapReduce is a popular data processing tool [2], it
still has several important limitations. In particular, skew is
a significant challenge in many applications executed on this
platform [16, 21, 25]. When skew arises, some partitions of
an operation take significantly longer to process their input
data than others, slowing down the entire computation.

Figure 1 illustrates the problem. We use PageRank [4] as
an example of a UDO. As the figure shows, this UDO is ex-
pressed as a MapReduce job, which runs in two main phases:
the map phase and the reduce phase. In each phase, a sub-
set of the input data is processed by distributed tasks in a
cluster of computers. Each task corresponds to a partition
of the UDO. When a map task completes, the reduce tasks
are notified to pull newly available data. This transfer pro-
cess is referred to as a shuffle. All map tasks must complete
before the shuffle part of the reduce phase can complete, al-
lowing the reduce phase to begin. Load imbalance can occur
either during the map or reduce phases. We refer to such an
imbalanced situation as map-skew and reduce-skew respec-
tively. Skew can lead to significantly longer job execution
times and significantly lower cluster throughput. In the fig-
ure, each line represents one task. Time increases from left
to right. This job exhibits map-skew: a few map tasks take
5 to 10 times as long to complete as the average, causing the
job to take twice as long as an execution without outliers.

There are several reasons why skew can occur in a
UDO [16, 21, 25]. In this paper, we consider two very com-
mon types of skew: (1) skew caused by an uneven distri-
bution of input data to operator partitions (or tasks) and
(2) skew caused by some portions of the input data taking
longer to process than others. For these sources of skew,
speculative execution, a popular strategy in MapReduce-
like systems [6, 13, 17] to mitigate skew stemming from a
non-uniform performance of physical machines, is ineffective
because the speculative tasks execute the same code on the
same data and therefore do not complete in any less time
than the original tasks.

Skew is a well-known problem that has been extensively
studied in the context of parallel database management sys-
tems and adaptive or stream processing systems (See Sec-
tion 6). One solution for handling skew involves the imple-
mentation of special skew-resistant operators. While this
approach has successfully been applied to user-defined op-
erators [29], it imposes an extra burden on the operator
writer and only applies to operations that satisfy certain
properties. An alternate common strategy involves dividing
work into extremely fine-grained partitions and re-allocating
these partitions to machines as needed [30]. Such a strategy
is transparent to the operator writer, but it imposes signifi-
cant overhead due to either state migration [30] or extra task
scheduling [21]. A final strategy consists in materializing
the output of an operator completely, sample that output,
and plan how to re-partition it before executing the next
operator. Such a strategy can yield efficient operator execu-
tion, but requires a synchronization barrier between opera-
tors, preventing pipelining and online query processing [14].
While MapReduce has limited pipelining today, significant
efforts are underway to remove this constraint [33, 34].

In this paper, we propose SkewTune, a new technique for
handling skew in parallel user-defined operations (UDOs).
SkewTune is designed for MapReduce-type engines, charac-
terized by disk-based processing and a record-oriented data
model. We implemented the SkewTune technique by ex-
tending the Hadoop parallel data processing system [13].
SkewTune relies on two properties of the MapReduce model:
(1) MapReduce’s ability to buffer the output of an operator
before transmitting it to the next operator; and (2) opera-
tor de-coupling, where each operator processes data as fast
as possible without back-pressure from downstream opera-
tors. SkewTune’s optimizations mitigate skew while preserv-
ing the fault-tolerance and scalability of vanilla MapReduce.
The key features of SkewTune are:

• SkewTune mitigates two very common types of skew:
Skew due to an uneven distribution of data to operator
partitions and skew due to some subsets of the data
taking longer to process than others.

• SkewTune can optimize unmodified MapReduce pro-
grams; programmers need not change a single line of
code.

• SkewTune preserves interoperability with other UDOs.
It guarantees that the output of an operator consists
of the same number of partitions with data sorted in
the same order within each partition as an execution
without SkewTune.

• SkewTune is compatible with pipelining optimizations
proposed in the literature (c.f., [34]); it does not re-
quire any synchronization barrier between consecutive
operators1.

We evaluate SkewTune through experiments with real
data and real applications including PageRank [4], Cloud-
Burst [29], and an application that builds an inverted index
over Wikipedia. We show that SkewTune can reduce pro-
cessing times by up to factor of 4 when skew arises and
adds only minimal overhead in the absence of skew. Most
importantly, SkewTune delivers consistent performance in-
dependent of the initial configuration of a MapReduce job.

The rest of this paper is organized as follows. We dis-
cuss the problem description in more detail in Section 2.
We present the SkewTune approach in Section 3 and the
Hadoop implementation in Section 4. We show results from
experiments with real application in Section 5. We finally
discuss related work in Section 6.

2. PROBLEM DESCRIPTION
In this section, we review the MapReduce programming

model and discuss the types of skew that can arise in this
environment and that SkewTune is designed to mitigate.

2.1 MapReduce Programming Model
The MapReduce programming model calls for two func-

tions map and reduce with the following types.

map :: (K1, V 1)→ [(K2, V 2)]

reduce :: (K2, [V 2])→ [(K3, V 3)]

1However, SkewTune, like MapReduce, does not allow
downstream operators to throttle the flow of upstream op-
erators, as is typically the case in parallel pipelined query
plans.
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Figure 2: (a) Distribution of map task runtime for

CloudBurst with 162 mappers. The bimodal distribution

corresponds to the two different types of input datasets

being processed. (b) Distribution of reduce task runtime

for CloudBurst with 128 reducers. The reduce is com-

putationally expensive and has a smooth runtime distri-

bution, but there is a factor of five difference in runtime

between the fastest and the slowest reduce tasks.

The map function takes a key and value of arbitrary types
K1 and V 1, and returns a sequence of (key, value) pairs
of possibly different types, K2 and V 2. All values associ-
ated with the same key K2 are grouped into a sequence and
passed to the reduce function, which emits arbitrary key-
value pairs of a final type K3 and V 3.

Optionally, in the Hadoop implementation of MapReduce,
users can also specify a custom partition function that re-
distributes the output of map tasks to reduce tasks.

In this paper, we focus on the common class of MapReduce
applications that consist of pure map and reduce functions,
which operate on individual input keys without keeping any
state between consecutive keys.

2.2 Types of Skew
In previous work, we analyzed the types of skew that arise

in a variety of existing MapReduce applications [22]. Here,
we briefly review four common types of skew that SkewTune
is designed to address.
Map phase: Expensive Record. Map tasks process a
collection of records in the form of key-value pairs, one-by-
one. Ideally, the processing time does not vary significantly
from record to record. However, depending on the applica-
tion, some records may require more CPU and memory to
process than others. These expensive records may simply
be larger than other records, or the map algorithm’s run-
time may depend on the record value. PageRank [4] is an
application that can experience this type of skew (Figure 1).
PageRank is a link analysis algorithm that assigns weights
(ranks) to each vertex in a graph by iteratively aggregating
the weights of its inbound neighbors. Vertexes with a large
outdegree take disproportionately longer to process because
the map generates an output tuple per outgoing edge.
Map phase: Heterogeneous Map. MapReduce is a
unary operator, but can be used to emulate an n-ary opera-
tion by logically concatenating multiple datasets as a single
input. Each dataset may require different processing, lead-
ing to a multi-modal distribution of task runtimes. Figure
2(a) illustrates an example using the Cloudburst applica-
tion [29]. CloudBurst is a MapReduce implementation of
the RMAP algorithm for short-read gene alignment2, which
aligns a set of genome sequence reads against a reference se-

2http://rulai.cshl.edu/rmap/

quence. CloudBurst distributes the approximate alignment
computation across reduce tasks by partitioning n-grams of
both sequences and reads. As a skew-mitigation strategy,
the sequences bearing frequent n-grams are replicated across
reduce tasks, while other sequences are hash-partitioned.
These two algorithms exhibit different runtimes.
Reduce phase: Partitioning skew. In MapReduce, the
outputs of map tasks are distributed among reduce tasks
via hash partitioning (by default) or some user-defined par-
titioning logic. The default hash partitioning is usually ad-
equate to evenly distribute the data. However, hash parti-
tioning does not guarantee an even distribution. For exam-
ple, in the inverted index building application, if the hash
function partitions the data based on the first letter of a
word, reducers processing more popular letters are assigned
a disproportional amount of data.
Reduce phase: Expensive Key Group. In MapReduce,
reduce tasks process a sequence of (key, set of values) pairs,
called key groups. As in the case of expensive records pro-
cessed by map, expensive key groups can skew the runtime
of reduce tasks. Figure 2(b) illustrates an example.

2.3 SkewTune Design Requirements
Before presenting the SkewTune approach, we first discuss

the rationale behind its design. When designing SkewTune,
we had the following goals in mind:
Developer Transparency. The first goal behind Skew-
Tune is to make it easier for MapReduce developers to
achieve high performance. For this reason, we do not want
these developers to even be aware that skew problems can
arise. We want SkewTune to simply be an improved version
of Hadoop that executes their jobs faster. As a result, we
reject all design alternatives that require operator writers to
either implement their jobs following special templates [3] or
provide special inputs such as cost functions for their oper-
ators [21]. Instead, SkewTune should operate on unchanged
MapReduce jobs.
Mitigation Transparency. Today, MapReduce makes
certain guarantees to users: The output of a MapReduce
job is a series of files, with one file per reducer. The user
can configure the number of reducers. Additionally, the in-
put of each reducer is sorted on the reduce key by the user-
provided comparator function thus the output is produced
in a specific order. To facilitate adoption and to ensure the
correctness and efficiency of the overall application, we want
SkewTune to preserve these guarantees. The output of a job
executed with SkewTune should be the same as the output
of a job executed without SkewTune: it should include the
same number of files with the same data order inside these
files. Indeed, users often create data analysis workflows and
the application consuming the output of a MapReduce job
may rely on there being a specific number of files and on
the data being sorted within these files. By preserving these
properties, SkewTune also helps ensure predictability: the
same job executed on the same input data will produce the
same output files in the same order.
Maximal Applicability. In MapReduce (and in other par-
allel data processing systems), many factors can cause skew
in a UDO. Section 2 presented an overview of several such
factors. We designed SkewTune to handle these different
types of skew rather than specializing SkewTune for only one
type of skew [6, 16]. In general, SkewTune strives to make
the least number of assumptions about the cause of skew.



Instead, it monitors execution, notices when some tasks run
slower than others, and reacts accordingly independent of
the reason why the tasks are slower.
No Synchronization Barriers. Finally, parallel data pro-
cessing systems try to minimize global synchronization bar-
riers to ensure high performance [20] and produce incremen-
tal results when possible. Even in MapReduce, reducers are
allowed to start copying data before the previous mappers
finish execution. Additionally, new MapReduce extensions
strive to further facilitate pipelining during execution [24,
33, 34]. For those reasons, we avoided any design options
that required blocking while an operator finishes processing
before letting the next operator begin shuffling (and possibly
processing) the data.

To achieve the above goals, SkewTune only assumes that
a MapReduce job follows the API contract: each map() and
reduce() invocation is independent. This assumption en-
ables SkewTune to automate skew mitigation because it
can be sure that re-partitioning input data at the bound-
ary of map and reduce function invocations is safe. Such
re-partitioning will not break the application logic.

3. SKEWTUNE APPROACH
SkewTune is designed to be API-compatible with Hadoop,

providing the same parallel job execution environment while
adding capabilities for detecting and mitigating skew. This
section presents SkewTune’s approach and core algorithms;
Section 4 describes the implementation on top of Hadoop.

3.1 Overview
SkewTune takes a Hadoop job as input. For the purpose

of skew mitigation, SkewTune considers the map and reduce
phases of the job as separate UDOs. In SkewTune, as in
Hadoop, a UDO pulls its input from the output of the pre-
vious UDO, where it is buffered locally. A UDO is assumed
to take a record as input. A key-value pair (i.e., mapper
input) and a key group (i.e., reducer input) are each con-
sidered a special case of a record. Each UDO is parallelized
into tasks, and each task is assigned a slot in the cluster.
There is typically one slot per CPU core per node. When a
task completes, the slot becomes available.

SkewTune’s skew mitigation technique is designed for
MapReduce-type data processing engines. The three im-
portant characteristics of these engines with respect to skew
handling are the following: (1) A coordinator-worker archi-
tecture where the coordinator node makes scheduling deci-
sions and worker nodes run their assigned tasks. On comple-
tion of a task, the worker node requests a new task from the
coordinator. This architecture is commonly used today [6, 8,
13, 17]. (2) De-coupled execution: Operators do not impose
back-pressure on upstream operators. Instead, they execute
independently of each other. (3) Independent record pro-
cessing: The tasks are executing a UDO that processes each
input record (possibly nested) independently of each other.
Additionally, SkewTune requires (4) Per-task progress esti-
mation, tremain, which estimates the time remaining [26, 37]
for each task. Each worker periodically reports this estimate
to the coordinator. (5) Per-task statistics: each task keeps
track of a few basic statistics such as the total number of
(un)processed bytes and records.

Figure 3 illustrates the conceptual skew mitigation strat-
egy of SkewTune. Without SkewTune, the operator com-
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(b) With SkewTune, the system detects available resources
as task T1 completes at t1. SkewTune identifies task T2 as
the straggler and re-partitions its unprocessed input data.
SkewTune repeats the process until all tasks complete.

Figure 3: Conceptual skew mitigation in SkewTune

pletion time is dominated by the slowest task (e.g., T2 in
Figure 3(a)). With SkewTune, as shown in Figure 3(b), the
system detects that T2 is experiencing skew at t1 when T1
completes. SkewTune labels T2 as the straggler and miti-
gates the skew by repartitioning T2’s remaining unprocessed
input data. Indeed, T2 is not killed but rather terminates
early as if all the data that it already processed was the only
data it was allocated to process. Instead of repartitioning
T2’s remaining input data across only slots 1 and 2, Skew-
Tune proactively repartitions the data to also exploit slot 3,
which is expected to become available when T3 completes.
SkewTune re-partitions the data such that all new parti-
tions complete at the same time. The resulting subtasks
T2a, T2b, and T2c are called mitigators and are scheduled
in the longest processing-time first manner. SkewTune re-
peats the detection-mitigation cycle until all tasks complete.
In particular, at time t2, SkewTune identifies T4 as the next
straggler and mitigates the skew by repartitioning T4’s re-
maining input data.

In terms of our requirements from Section 2.3, Skew-
Tune achieves developer transparency by detecting and mit-
igating skew at runtime without requiring any input from
the developers. We further discuss SkewTune’s skew detec-
tion approach in Section 3.2. To achieve mitigation trans-
parency, SkewTune re-partitions the straggler’s data using
range-partitioning as we discuss further in Section 3.3. To
be maximally applicable, SkewTune makes no assumptions
about the cause of the skew. It also respects the input record
boundary when repartitioning data. Thus, as long as a UDO
follows the MapReduce API contract, SkewTune is appli-
cable without breaking the application semantics. Finally,
SkewTune’s skew mitigation approach does not require any
synchronization barriers.

3.2 Skew Detection
Skew detection determines when to mitigate skew experi-

enced by which task. If the detection is too eager, SkewTune
may split a task and pay unnecessary overhead (i.e., false-
positive). If the detection is too conservative, SkewTune
may miss the right mitigation timing thus diminishing the
skew-mitigation gains (i.e., false-negative).

Late Skew Detection: SkewTune’s skew detection ap-



Table 1: Notations in Section 3.2,3.3

N Set of nodes in the cluster
S Set of slots in the cluster (multiple slots per node)
O Set of output files
R Set of running tasks
W Set of unscheduled tasks
∆ Straggler’s unprocessed data (bytes)
β Disk bandwidth (bytes/seconds)
ρ Task scheduling overhead (seconds)
ω Repartitioning overhead (seconds)

T , tremain A task and its time-remaining (seconds)

proach relies on the fact that tasks in consecutive phases
are decoupled from each other. That is, map tasks can pro-
cess their input and produce their output as fast as possible.
They never block waiting for reduce tasks to consume that
data. Similarly, reduce tasks can never be blocked by map
tasks in a subsequent job.

This decoupling has important implications for skew han-
dling. Because tasks can independently process their input
as fast as possible, the cluster has high utilization as long as
each slot is running some task. For this reason, SkewTune
delays any skew mitigation decisions until a slot becomes
available. We call this approach late skew detection. Late
skew detection is analogous to MapReduce’s current specula-
tive execution mechanism [6, 13], where slow remaining tasks
are replicated when slots become available. Similarly, Skew-
Tune’s repartitioning overhead is only incurred when there
are idle resources. Late skew detection thus reduces oppor-
tunities for false positives. At the same time, it avoids false
negatives by immediately allocating resources when they be-
come available.

Identifying Stragglers: The next key question is to
decide which task to label as the straggler. Here, we observe
that it is never beneficial to re-partition more than one task
at a time, since re-partitioning one task can suffice to fully
occupy the cluster again. Given that only one task should
be labeled as a straggler, SkewTune selects the task with the
greatest tremain estimate at the time of detection.

SkewTune flags skew when half of the time remaining is
greater than the repartitioning overhead:

tremain
2

> ω

The intuition is as follows. If SkewTune decides to repar-
tition task T , at least two slots become available: the slot
running T and the slot that recently became idle and trig-
gered skew detection. After paying repartition overhead ω,
the expected remaining time would be half of the remaining
time of T (Table 1 summarizes the notation). The repar-
tition thus only makes sense if the original runtime of T is
greater than the new runtime plus the overhead. In our pro-
totype implementation, ω is on the order of 30 seconds (see
Section 5). Hence, our prototype only re-partitions tasks
if at least 1 minute worth of processing remains. For long-
running tasks where skew is particularly damaging, overhead
of a few minutes is typically negligible.

Algorithm 1 summarizes SkewTune’s skew detection strat-
egy. As long as there exist unscheduled tasks, SkewTune in-
vokes the ordinary task scheduler chooseNextTask(). If the
coordinator runs out of tasks to schedule, SkewTune starts
to consider repartitioning one of the running tasks based on

Algorithm 1 GetNextTask()

Input: R: set of running tasks
W: set of unscheduled waiting tasks
inProgress: global flag indicating mitigation in progress

Output: a task to schedule
1: task ← null
2: if W 6= ∅ then
3: task ← chooseNextTask(W)
4: else if ¬inProgress then
5: task ← argmaxtask∈R time remain(task)
6: if task 6= null ∧ time remain(task) > 2 · ω then
7: stopAndMitigate(task) /* asynchronous */
8: task ← null
9: inProgress← true

10: end if
11: end if
12: return task

the tremain estimates. stopAndMitigate() asynchronously
notifies the chosen task to stop and to commit the output
produced so far. We describe the mitigation process next.

3.3 Skew Mitigation
There are three challenges related to mitigating skew

through repartitioning. First, we want to minimize the num-
ber of times that we repartition any task to reduce reparti-
tioning overhead. Second, when we repartition a straggler,
we want to minimize any visible side-effects of the reparti-
tioning to achieve mitigation transparency (see Section 2.3).
Finally, we want to minimize the total overhead of skew
mitigation, including any unnecessary recomputations.

SkewTune strives to minimize the number of repartition
operations by identifying one straggler at a time and proac-
tively partitioning its data in a manner that accounts for
slots that are likely to become available in the near future.
To eliminate side-effects of skew mitigation, SkewTune uses
range partitioning to ensure that the original output order
of the UDO result is preserved. To minimize the mitigation
overhead, SkewTune saves a straggler’s output and reparti-
tions only its unprocessed input data. It also uses an inex-
pensive, linear-time heuristic algorithm to plan mitigators.
To drive this planning, SkewTune needs to collect informa-
tion about the value distribution in the repartitioned data.
To minimize overhead, SkewTune makes a cost-based deci-
sion to scan the remaining data locally at the straggler or to
spawn new tasks that scan the distributed input in parallel.

Skew mitigation occurs in three steps. First, the straggler
stops its computation. Second, depending on the size of the
data that remains to be processed, either the straggler or
the operators upstream from the straggler collect statistics
about the straggler’s remaining input data. Finally, the co-
ordinator plans how to re-partition the straggler’s remaining
work and schedules the mitigators. We now present these
steps in more detail.

3.3.1 Stopping a Straggler
When the coordinator asks a straggler to stop, the strag-

gler captures the position of its last processed input record,
allowing mitigators to skip previously processed input. If the
straggler is in a state that is impossible or difficult to stop
(e.g., processing the last input record or performing the local
sort at the end of the map phase), the request fails and the
coordinator either selects another straggler or repartitions
and reprocesses the entire straggler’s input if this straggler



is the last task in the job. Reprocessing a straggler’s entire
input is analogous to MapReduce’s speculative execution [6,
13] except that SkewTune repartitions the input before re-
processing it.

3.3.2 Scanning Remaining Input Data
In order to ensure skew mitigation transparency, Skew-

Tune uses range-partitioning to allocate work to mitiga-
tors. With this approach, the data order remains unchanged
between the original MapReduce job and the altered job.
The output of the mitigators only needs to be concatenated
to produce an output identical to the one obtained with-
out SkewTune. An alternate design would be to use hash-
partitioning and add an extra MapReduce job to sort-merge
the output of the mitigators. Such an extra job would add
overhead. Additionally, a hash function is not guaranteed
to evenly balance load between mitigators, especially if the
number of keys happens to be small. Range partitioning
avoids both problems.

When range-partitioning data, a data range for a map
task takes the form of an input file fragment (i.e., file name,
offset, and length). A range for a reduce task is an interval of
reduce keys. In the rest of this section, we focus on the case
of repartitioning the reduce task’s input. The techniques are
equally applicable to map tasks.

Range-partitioning a straggler’s remaining input data re-
quires information about the content of that data: The co-
ordinator needs to know the key values that occur at various
points in the data. SkewTune collects that information be-
fore planning the mitigator tasks.

A näıve approach is to scan the data and extract all keys
together with the associated record sizes. The problem with
this approach is that it may produce a large amount of data
if there exists a large number of distinct keys. Such large
data imposes a significant network overhead and also slows-
down the mitigator planning step.

Instead, SkewTune collects a compressed summary of the
input data. The summary takes the form of a series of key
intervals. Each interval is approximately the same size in
bytes, respecting the input boundaries (e.g., a single record
for map, values sharing a common reduce key for reduce).
These intervals become the units of range-partitioning. Con-
secutive intervals can be merged to create the actual data
range assigned to a mitigator.
Choosing the Interval Size: Given |S|, the total num-
ber of slots in the cluster, and ∆, the number of unprocessed
bytes, SkewTune needs to generate at least |S| intervals since
it is possible that all cluster slots will be available for mit-
igators. However, because SkewTune may want to allocate
an uneven amount of work to the different mitigators (e.g.,
Figure 3), SkewTune generates k|S| intervals. Larger val-
ues of k enable finer-grained data allocation to mitigators
but they also increase overhead by increasing the number
of intervals and thus the size of the data summary. In our
prototype implementation, k is set to 10. Hence, the size s
of the intervals is given by s = b ∆

k·|S|c.
Local Scan: If the size of the remaining straggler data is
small, the worker running the straggler scans that data and
generates the intervals. Algorithm 2 summarizes the interval
generation process. The algorithm expects a stream of in-
tervals I as input. This is the stream of singleton intervals,
with one interval per key in the reducer’s input. For the

Algorithm 2 GenerateIntervals()

Input: I: Sorted stream of intervals
b: Initial bytes-per-interval. Set to s for local scan.
s: Target bytes-per-interval.
k: Minimum number of intervals.

Output: list of intervals
1: result← [] /* resulting intervals */
2: cur ← new interval() /* current interval */
3: for all i ∈ I do
4: if i.bytes > b ∨ cur.bytes ≥ b then
5: if b < s then
6: result.appendIfNotEmpty(cur)
7: if |result| ≥ 2× k then
8: /* accumulated enough intervals. increase b. */
9: b← min{2× b, s}

10: /* recursively recompute buffered intervals */
11: result← GenerateIntervals(result, b, b, k)
12: end if
13: else
14: result.appendIfNotEmpty(cur)
15: end if
16: cur ← i /* open a new interval */
17: else
18: cur.updateStat(i) /* aggregate statistics */
19: cur.end← i.end
20: end if
21: end for
22: result.appendIfNotEmpty(cur)
23: return result

local scan, b is set to s and k is ignored. The algorithm iter-
ates over these singleton intervals. To generate the output
intervals, it opens an interval with the first seen key. It then
merges the subsequent keys and their statistics (e.g., size of
all values in bytes) until the aggregated byte size reaches the
threshold s. If a key has a byte size larger than s, the key
remains in its own singleton interval. The process continues
until the end of the data.
Choosing between a Local and a Parallel Scan: To
choose between a local and a parallel scan, SkewTune com-
pares the estimated cost (in terms of total time) for each
approach. The time for the local scan is given by ∆

β
, where

∆ is the remaining input data in bytes and β is the local
disk bandwidth. The time for the parallel scan is the time
to schedule an extra MapReduce job to perform the scan,
and the time for that job to complete. The latter is equal
to the time that the slowest task in the job, say n, will take

to scan its input data:
∑

o∈On
o.bytes

β
, where On is the set of

all map outputs at node n (recall that multiple map tasks
can run on a node). The decision is thus made by testing
the following inequality:

∆

β
>

max{
∑
o∈On

o.bytes | n ∈ N}
β

+ ρ

where N is the set of nodes in the cluster and ρ is the task
scheduling delay. The stopping straggler tests the inequality
since it knows where its input data came from. If a parallel
scan is expected to be more cost-effective, the straggler im-
mediately replies to the coordinator and the latter schedules
the parallel scan.

Parallel Scan: During a parallel scan, Algorithm 2 runs
in parallel over the distributed input data (i.e., map out-
puts). The intervals generated for each map output file are



begin values end

k3 : 4 9 k7 : 3
k7 : 1 10 k100 : 2
k50 : 2 14 k95 : 5

Intervals from Parallel Local
Scans.

⇒

Range Est. values

[k3, k3] 4
(k3, k7) 9
[k7, k7] 4

(k7, k50) 0 + 10/5
[k50, k50] 2 + 10/5
(k50, k95) 14 + 10/5
[k95, k95] 5 + 10/5

(k95, k100) 0 + 10/5
[k100, k100] 2

Aligned ranges and
estimated # of values.

Figure 4: Merging Result of Parallel Scan. The table

on the left shows the output of the parallel scan. The

middle column represents the number of values that fall

between begin and end keys. Each key is also associated

with its number of values. The table on the right shows

the output from merging the input intervals and the es-

timated number of values for each range. The values

in a wide interval (k7, k100) introduces uncertainty. The

above table evenly redistributes the 10 values across the

five ranges included in (k7, k100).

then put together to estimate the intervals that would have
been generated by a local scan (illustrated in Figure 4).

The s value for the Local Scan may be too large for a
parallel scan because there are usually more map outputs
than the total number of slots in the cluster. Thus, we set
a smaller s value for the parallel scan to properly generate
intervals for each map output:

s = b ∆

k ·max{|S|, |O|}c

where O is the union of all the On sets. Additionally, be-
cause the size of the map output files can be skewed and
because SkewTune does not know how much data in each of
these files will have to be re-processed, SkewTune dynam-
ically adjusts the interval size (variable b in Algorithm 2)
starting from a small value (e.g., 4 KB in prototype) and
adaptively increasing it as it sees more unprocessed data.
Whenever the b value is doubled, the collected intervals so
far are merged using the new b value (line 7-12). Once the
b value becomes s, the algorithm reaches a steady state and
produces intervals every s bytes. Without this approach, a
single wide key-interval may be generated for small data files
and such wide key-intervals yield errors during the interval
merge process at the coordinator.

We do not show the algorithm for the interval merge pro-
cess due to space constraints. Figure 4 illustrates the ap-
proach with an example.

3.3.3 Planning Mitigators
Finally, we present SkewTune’s approach to planning mit-

igators. The goal is to find a contiguous order-preserving
assignment of intervals to mitigators, meaning that the in-
tervals assigned to a mitigator should be totally ordered on
the key and should be contiguous: i.e., no intervals between
the first and the last keys should be assigned to other miti-
gators. The assignment should also minimize the completion
time of all re-allocated data.

The planning algorithm should be fast because it is on the
critical path of the mitigation process. A longer execution
time means a longer idle time for the available slot in the

Algorithm 3 LinearGreedyPlan()

Input: I: a sorted array of intervals
T : a sorted array of tremain for all slots in the cluster
θ: time remaining estimator
ω: repartitioning overhead
ρ: task scheduling overhead

Output: list of intervals
/* Phase 1: find optimal completion time opt. */

1: opt← 0; n← 0 /* n: # of slots that yield optimal time */
2: W ← θ(R) /* remaining work+work running in n nodes */
3: /* use increasingly many slots to do the remaining work */
4: while n < |T | ∧ opt ≥ T [n] do

5: opt′ ← W+T [n]+ρ
n+1

/* optimal time using n+ 1 slots */

6: if opt′ − T [n] < 2 · ω then
7: break /* assigned too little work to the last slot */
8: end if
9: opt← opt′; W ←W + T [n] + ρ; n← n+ 1

10: end while
/* Phase 2: greedily assign intervals to the slots. */

11: P ← [] /* intervals assigned to slots */
12: end← 0 /* index of interval to consider */
13: while end < |I| do
14: begin← end; remain← opt− T [|P |]− ρ
15: while remain > 0 do
16: test ← θ(I[end]) /* estimated proc. time of interval */
17: if remain < 0.5 · test then
18: break /* assign to the next slot */
19: end if
20: end← end+ 1; remain← remain− test
21: end while
22: if begin = end then
23: end← end+ 1 /* assign a single interval */
24: end if
25: P.append(new interval(I[begin], I[end− 1]))
26: end while
27: return P

cluster. We now describe a heuristic algorithm with linear
time complexity with respect to the number of intervals.

Algorithm 3 takes as input the time remaining estimates
for all active tasks in the cluster, the intervals collected by
the data scan, a time remaining estimator θ, which serves to
estimate processing times for intervals from their statistics
(e.g., sizes in bytes), and overhead parameters. The algo-
rithm proceeds in two phases. The first phase (line 1-10)
computes the optimal completion time opt assuming a per-
fect split of the remaining work (i.e., record boundaries are
not honored). The phase stops when a slot is assigned less
than 2ω work to avoid generating arbitrarily small mitiga-
tors (line 6-7). 2ω is the largest amount of work such that
further repartitioning is not beneficial. In the second phase,
the algorithm sequentially packs the intervals for the earli-
est available mitigator as close as possible to the opt value.
The algorithm then repeats the process for the next avail-
able mitigator until it assigns all the intervals to mitigators.
The time complexity of this algorithm is O(|I|+ |S| log |S|)
where |I| is the number of intervals and S is the number of
slots in the cluster.

3.4 Discussion
SkewTune in a Shared Cluster: SkewTune currently

assumes that a single user has access to all the resources in
a cluster. There are two ways to incorporate SkewTune in
a shared cluster setup: (1) by using a task scheduler that
carves out a pre-defined set of resources for each user or
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(2) by implementing a SkewTune-aware scheduler that pri-
oritizes mitigators (and preempts other tasks if necessary)
if mitigating a straggler improves overall cluster utilization
and latency.

Very expensive map() or reduce(): SkewTune is de-
signed to repartition load around record boundaries. Skew-
Tune is not designed to mitigate skew in the case where sin-
gle invocations of the user-defined map() or reduce() func-
tions take an extremely long time. To handle such cases,
SkewTune would need to be extended with techniques such
as those in the SkewReduce [21] system.

4. SKEWTUNE FOR HADOOP
Overview: We implemented SkewTune on top of Hadoop

0.21.1. We modified core Hadoop classes related to (1) the
child process, which runs the user supplied MapReduce ap-
plication and (2) the Shuffle phase, which also runs in the
child process. The only class we modified that runs in the
Hadoop trackers is the JobInProgress class, which holds
all information associated with a job. We added fields to
track dependent jobs (i.e., mitigator jobs) such that the map
output is only cleaned up when there is no dependent job
running.

The prototype consists of a job tracker and a task tracker
analogous to those used in Hadoop. The child processes run-
ning with SkewTune report to both Hadoop and SkewTune
trackers as shown in Figure 5. The SkewTune job tracker
serves as the coordinator and is responsible for detecting
and mitigating skew in the jobs submitted through its in-
terface. The SkewTune task tracker serves as a middle tier
that aggregates and delivers messages between the Skew-
Tune job tracker and the Hadoop MapReduce tasks. When
mitigating skew, the SkewTune job tracker executes a sepa-
rate MapReduce job for each parallel data scan and for each
mitigation.

Repartitioning a Map Task: When SkewTune de-
cides to repartition a map task, the map task runs the local
scan (because map tasks are typically assigned with small
amounts of data. It is possible to use the parallel scan if the
size of remaining data is large and the input is replicated)
and reports the summary intervals to the coordinator. The
mitigators for a map task execute as map tasks within a new
MapReduce job. They have the same map and, optionally
combiner, functions.

We modify the original Map task implementation to sort
and write the map output to HDFS when the task is a mit-
igator. Without this change, a map without reduce would

skip the SORT phase. The map output index, i.e., the infor-
mation that reports which portion of the file is designated
to which reduce task, is also written to HDFS for fault tol-
erance and sent to the SkewTune job tracker via a heartbeat
message. The job tracker broadcasts the information about
the mitigated map output to all reducers in the job.

Repartitioning a Reduce Task: To repartition a re-
duce task, the parallel scan job (if it exists) and the miti-
gator job read map outputs from the Hadoop task tracker3.
Thus, we implemented InputSplit, TaskTrackerInputFor-
mat and MapOutputRecordReader to directly fetch the map
output from task trackers. Our implementation uses the
HDFS API to read the mitigated map outputs. MapOutpu-

tRecordReader skips over the previously processed reduce
keys to ensure that only unprocessed data is scanned and
repartitioned. For both jobs, we create one map task per
node, per storage type (i.e., task tracker and HDFS) so that
each map task reads local data if the schedule permits it.

The map task in the mitigator job runs an identity func-
tion since all the data has already been processed. The
partition function is replaced with a range partitioner pro-
vided by the SkewTune framework. The bucket informa-
tion generated by the planner is compressed and encoded
in the job specification. If a combiner exists in the original
job, the map task also runs the same combiner to reduce
the amount of data. Since the map is running the identity
function, SkewTune knows that it can use more memory for
the combiner and sort. Thus, it adjusts the corresponding
configuration values appropriately. The reduce task runs
unchanged.

5. EVALUATION
We evaluate the benefits of SkewTune when skew arises,

SkewTune’s robustness to initial job configuration parame-
ters, and SkewTune’s overhead in the absence of skew. We
find that SkewTune delivers up to a factor of 4X improve-
ment on real datasets and real UDOs. It also significantly
reduces runtime variability. Further, the overhead of Skew-
Tune in the absence of skew is shown to be minimal.

All experiments are performed on a twenty-node cluster
running Hadoop 0.21.1 with a separate master node. Each
node uses two 2 GHz quad-core CPUs, 16 GB of RAM, and
two 750 GB SATA disk drives. All nodes are used as both
compute and storage nodes. The HDFS block size is set to
128 MB and each node is configured to run at most four
map tasks and four reduce tasks concurrently.

We evaluate SkewTune using the following applications.
Inverted Index (II): An inverted index is a popular data

structure used for Web search. We implemented a MapRe-
duce job that builds an inverted index from the full English
Wikipedia archive and generates a compressed bit vector for
each word. The Potter word stemming algorithm is used to
post-process the text during the map phase 4. The RADIX
partitioner is used to map letters of the alphabet to reduc-
ers and to produce a lexicographically ordered output. The
total data size is 13 GB.

PageRank (PR): PageRank [4] is a popular link anal-
ysis algorithm that assigns weights (ranks) to each vertex

3Map output is served via HTTP by an embedded web
server in the task tracker
4We use a bit vector implementation and a stemming algo-
rithm from the Apache Lucene open source search engine.



in a graph by iteratively aggregating the weights of its in-
bound neighbors. We take the PageRank implementation
from Cloud 9 [18] and apply it to the freebase dataset [11].
The total input data size is 2.1 GB.

CloudBurst (CB): CloudBurst [29] is a MapReduce im-
plementation of the RMAP algorithm for short-read gene
alignment5. CloudBurst aligns a set of genome sequence
reads with a reference sequence. We take the CloudBurst
application and use it to process a methylotroph dataset [19].
The total input data size is 1.1 GB.

5.1 Skew Mitigation Performance
The first question that we ask is how well SkewTune mit-

igates skew.
Figure 6(a) shows the runtime for the reduce phase of the

Inverted Index application. When using vanilla Hadoop, the
reduce phase runs across 27 reducers (one per letter of the
alphabet and one for special characters) and completes in 1
hour and 52 minutes. With SkewTune, as soon as the reduce
phase starts, SkewTune notices that resources are available
(there are a total of 80 reduce slots). It thus partitions the
27 tasks across the available slots until the cluster becomes
fully occupied. The runtime drops to only 25 minutes, a
factor of 4.5 faster. This experiment demonstrates that,
with SkewTune, a user can focus on the application logic
when implementing her UDO. She does not need to worry
about the cluster details (e.g., how to write the application
to use N reducers instead of the natural 27).

In the figure, we also show the ideal execution time for
the job. This execution time is derived from the logs of the
vanilla Hadoop execution: we compute the minimal run-
time that could be achieved assuming zero overhead and a
perfectly accurate cost model driving the load re-balancing
decisions. In the figure, we see that SkewTune adds a signif-
icant overhead compared to this ideal execution time. The
key reasons for the extra latency compared with ideal are
scheduling overheads and an uneven load distribution due to
inaccuracies in SkewTune’s simple runtime estimator. Skew-
Tune does, however, improve the total runtimes greatly com-
pared with vanilla Hadoop. In the rest of this section, we al-
ways decompose the runtime into ideal time and extra time.
The latter accounts for all real overheads of the system and
possible resource under utilization.

Figure 6(b) shows the runtime for the map phase of Cloud-
Burst. This application uses all map slots. Hence, the clus-
ter starts off fully utilized. However, the mappers process
two datasets: the sequence reads and the reference genome.
All map tasks assigned to process the former complete in un-
der a minute. With vanilla Hadoop, the job then waits for
the mappers processing the reference dataset to complete.
In contrast, SkewTune re-balances the load of the mappers
processing the reference dataset, which improves the com-
pletion time from 12 minutes to 3 minutes (ideal time is 66
seconds). This application is a classical example of skew
and it demonstrates SkewTune’s ability to both detect and
mitigate that skew. Notice that skew arises even though all
mappers are initially assigned the same amount of data (in
bytes).

Finally, we demonstrate SkewTune’s ability to help
users avoid the negative performance implications of mis-
configuring their jobs. Figure 6(c) shows the runtime for
the map phase of PageRank. The figure shows two config-

5http://rulai.cshl.edu/rmap/
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Figure 7: Performance Consistency of Map Phase: For

both PageRank (PR) and CloudBurst (CB), SkewTune

delivers high-performance consistently, while Hadoop is

sensitive to the initial configuration (here, the number

of map tasks).

urations: a good configuration and a worst-case configura-
tion. In the good case, vanilla Hadoop and SkewTune per-
form similarly. However, if the job is mis-configured, vanilla
Hadoop leads to a significantly longer completion time while
SkewTune maintains a consistent performance. To create
the bad configuration, we simply changed the input data or-
der: we sorted the nodes in the graph by increasing order
of outdegree. While in practice a user may not necessar-
ily hit the worst-case configuration for this application, the
experiment shows that vanilla Hadoop is sensitive to user
mis-configurations, unlucky data orders, and other unfortu-
nate conditions. In contrast, SkewTune delivers high per-
formance systematically, independent of these initial condi-
tions.

5.2 Performance Consistency
In this section, we further study the consistency of the

performance that SkewTune delivers. For this, we run the
CloudBurst and PageRank applications but we vary the ini-
tial number of tasks. Figure 7 shows the results for the
map phase of CloudBurst using either 80 or 801 mappers
and PageRank using either 9 or 17 mappers. As the fig-
ure shows, Vanilla Hadoop is sensitive to these configura-
tion parameters with up to a 7X difference in runtimes.
In contrast, SkewTune’s performance is significantly more
stable with performance differences within 50%. The fig-
ure shows, however, that for configurations without skew in
PageRank, SkewTune yields a runtime higher than that of
vanilla Hadoop (3 s more). This is due to inaccurate time-
remaining estimates: SkewTune missed the timing to miti-
gate skew of the longest map task and made an unnecessary
split of another task. The overhead, however, is negligible.

5.3 Skew Mitigation Overhead
To measure some of SkewTune’s overheads, we re-run the

same applications as above, but we tune them to ensure
low runtimes with vanilla Hadoop. We make the following
tunings. For CloudBurst, we configure the number of map
and reduce tasks exactly as the author recommends: We use
10 times as many map tasks and 2 times as many reduce
tasks as slots. In the experiment, we thus get 801 map tasks
(the last task is assigned only a small amount of data due
to rounding in size) and 160 reduce tasks. For the Inverted
Index, we use a hash partitioner and spread the reduce input
across 140 tasks. Finally, for PageRank, we use 17 map and
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Figure 6: UDO runtime with and without SkewTune.
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Figure 9: Reduce Tasks without Skew

17 reduce tasks with 128 MB chunks. This configuration
differs from the worst-case configuration in the ordering of
data (the original ordering of the dataset vs sorted by record
size) and a smaller chunk size (128MB vs. 256MB).

Figures 8 and 9 show the results. As the figures show,
SkewTune adds overhead but that overhead is small. In
most cases when applications are already well-tuned and do
not exhibit skew, the slots remain busy. SkewTune has few
opportunities to improve performance or incur repartition-
ing overhead. As a result, performance may improve only
slightly as in the case of the CloudBurst and Inverted In-
dex reduce phases. In other cases, the runtime can slightly
increase. Also with shorter overall runtimes, the overheads
of stopping, planning, and re-partitioning become more pro-
nounced. Errors in progress estimation also have more visi-
ble effects as does any unnecessarily re-partitioning of nearly
completed tasks.

Type Scan Plan < Compute Input Bytes

Map 8.0s (3.0) 0.19s (0.08) 5.01s (3.83) 84MB (55)
Reduce 15s (15.0) 0.18s (0.19) 15.7s (10.4) 140MB (175)

Table 2: Mitigation Overhead Statistics. The average

and standard deviation (number in parentheses) in sec-

onds for each mitigation step. Size of re-partitioned data.

“< Compute” represents time until the actual processing

resumes. Scans are all local scans.

In Figure 9, we also show the result of the REHASH tech-
nique, where we replace SkewTune’s range partitioning with
hash partitioning thus avoiding the need to scan the remain-
ing input data. Overall, REHASH performs slightly better
than SkewTune due to its reduced overhead but it requires
an extra job to recover the ordering (note that the num-
bers do not include such extra jobs!). SkewTune is only
marginally slower than REHASH but it preserves the out-
put order.

Detailed Mitigation Overhead Analysis: We further
analyze the overhead of mitigating the skew of a single strag-
gler by analyzing the execution logs of 32 map task mitiga-
tions and 64 reduce task mitigations from our three test ap-
plications. Overall, in these experiments, the current Skew-
Tune prototype incurs approximately 15 sec overhead for
map task skew mitigation and 30 sec for reduce tasks.

Table 2 shows the breakdown of the overhead. Interest-
ingly, the mitigator planning phase takes less than 200 ms.
It hardly incurs any overhead due to the compact summary
information. We ran extra experiments (not shown due to
space constraints), where we varied the interval granularity.
We found the PLAN phase to be consistently fast and below
500 ms in all configurations. The most significant overhead
component is the data scan, which takes approximately 10 to
15 sec for a local scan. This overhead grows linearly with the
size of the input data. Because SkewTune repartitions more
data for reduce tasks than map tasks in these experiments,
it follows that the total overhead is larger for reduce tasks.
With the same applications and datasets, parallel scans take
between 20 and 22 sec. This includes the startup and tear
down overhead of the MapReduce job as well as shuffling
and sorting overheads when scanning map outputs. This
overhead also grows linearly but with a much smaller slope
as we discuss below.

“< Compute” represents the time between mitigator plan-
ning and the resumption of the data computation. In case
of map mitigation, this time only includes the overhead of
starting a new job. For reduce mitigation, the overhead in-
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Time was measured under heavy disk load. For small

data sizes (< 1 GB), local scan is faster. For large data

sizes (> 1 GB), parallel scan is faster.

cludes another scan of the data to repartition and re-shuffle
that data.

Overhead of Local Scan vs. Parallel Scan: In all
three applications and datasets, the size of remaining data
during skew mitigation is small (< 1 GB). Thus, SkewTune
always performs a local scan rather than a parallel scan. To
evaluate the trade-off between the two approaches, we com-
pared the performance of the two scan strategies using a syn-
thetic workload. Figure 10 shows the results. We generated
random datasets with different sizes and evenly distributed
them across all 20 nodes. To simulate a realistic environ-
ment, we loaded all the disks using two background writer
processes per disk and dropped the disk cache before the
scan. The timing of parallel scan includes the MapReduce
job startup and cleanup overhead. In our 20 node cluster,
parallel scan performs better than local scan if the size of
remaining data is greater than 1 GB. With smaller data, the
MapReduce job overhead dominates the I/O time. However,
once the data becomes large enough, the overhead pays off
by reading a small amount of data per disk while local scan
has to sequentially read the data from a single disk. Clearly,
the gain will diminish if there exists a significant skew in the
amount of distributed input data. For example, for 8 GB
of data, local scan takes 890 s but parallel scan takes 679 s
when a node has 7.2 GB of data.

Summary: The above experiments show that SkewTune
effectively mitigates skew whether it is intrinsic to the appli-
cation, caused by a misconfiguration, or due to an unfortu-
nate input data order. SkewTune also delivers consistently
fast runtimes independent of initial job configuration param-
eters. SkewTune’s overhead is small to none when there is
no skew. Finally, the greatest overhead component of re-
partitioning a straggler’s data comes from the data scans
necessary for planning and re-allocating the data. Skew-
Tune’s ability to perform these scans in parallel when pos-
sible, however, effectively keeps these overheads low even
when large datasets need to be repartitioned.

6. RELATED WORK
MapReduce Stragglers. Dean and Ghemawat first

describe the straggler problem and solution (execute a re-
dundant copy of a task-in-progress on a different node) in
their original MapReduce paper [6]. Zaharia et al. [37] ex-
tend the approach to clusters with heterogeneous hardware.
Ganeshi et al. [1] develop a method that improves the de-

cision process of when to either restart a task or execute a
duplicate task and where to schedule it. Restarting or du-
plicating straggling tasks, however, only helps alleviate skew
problems due to inadequate resources available during task
execution. In contrast, SkewTune re-allocates work among
tasks to mitigate skew that is intrinsic to the computation.
Finally, resource-aware scheduling techniques [1] are com-
plementary to SkewTune.

Handling Data Skew in Parallel Systems: The data
skew problem has been extensively researched in the paral-
lel database literature, but only in the context of parallel
joins [7, 28, 35, 36] and parallel aggregate operators [31].
These techniques carry over to MapReduce-type platforms.
For example, the Pig system includes a SkewedJoin [10]
adapted from the literature [7]. In general, however, to
leverage these techniques users must implement them di-
rectly when writing their user-defined operators (e.g., [29]).

Skew has also been studied previously in the context
of MapReduce applications. In earlier work, we proposed
SkewReduce, a system that statically optimizes the data
partitioning according to user-defined cost functions [21].
The approach effectively addresses potential data skew prob-
lems, but it relies on domain knowledge from users and is
limited to specific types of applications. Ibrahim et al. and
Gufler et al. studied data skew in the reduce phase [12,
16]. Both approaches schedule reduce keys to the reduce
tasks based on cost models. In both systems, the reduce
key scheduling does not preserve the order as in the original
reduce output. SkewTune not only addresses skew in both
the map and reduce phases but also minimizes the side-effect
of skew mitigation by preserving input order. Finally, Lin
proposed an application-specific solution [25] to skew in the
map phase: disproportionately large records were split into
smaller ones to improve load balance between mappers.

Adaptive Processing: FLUX [30] splits an operator
into mini-partitions. As the pipeline, which includes the op-
erator, runs, FLUX observes machines and computes their
percent utilization by measuring the fraction of time they
spent being idle. It then moves mini-partitions from the
most heavily utilized to the most lightly utilized machines.
In our case this is equivalent to running many mappers and
many reducers and scheduling them as resources become
available. However, running a large number of small tasks
has been shown to create significant overhead [21]. Instead,
SkewTune only creates additional tasks when necessary.

Optimizing MapReduce Programs: Dittrich et al.
proposed the Hadoop++ system that optimizes MapRe-
duce jobs by leveraging indexing and join techniques [9].
Herodotou et al. proposed the Starfish optimization frame-
work that hierarchically optimizes from MapReduce jobs
to workflows by searching for good parameter configura-
tions [15]. The Starfish framework utilizes dynamic profiling
to capture the runtime behavior of map and reduce at the
granularity of phase level and helps users fine tune Hadoop
job parameters. The goal of these previous works is im-
proving the performance of MapReduce jobs by leveraging
database techniques or finding a good set of configuration
parameters. SkewTune aims at automatically reacting to
unexpected data skew encountered at runtime. All works in-
cluding SkewTune share a common subgoal: minimize user
intervention when trying to obtain the best performance out
of a MapReduce system.



7. CONCLUSION
In this paper, we presented SkewTune, a system that au-

tomatically mitigates skew in a broad class of user defined
operations implemented as MapReduce jobs. SkewTune re-
quires no input from users. It is broadly applicable as it
makes no assumptions about the cause of the skew but in-
stead observes the job execution and re-balances load as re-
sources become available. SkewTune is also capable of pre-
serving the order and partitioning properties of the output of
the original unoptimized job, making it transparently com-
patible with existing code, even in the context of complex
workflows and advanced MapReduce algorithms.

Experimental results show that SkewTune can deliver a
factor of 4X improvement over Hadoop on real and repre-
sentative datasets and real, non-trivial UDOs. At the same
time, it adds little to no overhead when skew is not present.
Finally, it provides for much more consistent job execution
times for jobs that sometimes incur skew thereby enabling
more predictable performance.
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